On Counters Used for Node Synchronization

C. A. Greenhall

Communications Systems Research Section

A node synchronization algorithm for a quick-look convolutional decoder was given in a previous article, which left two assertions unproved. The present article proves these assertions and gives an estimate for the distribution of the time to false alarm.

I. Introduction

A suboptimal quick-look decoding algorithm for the Deep Space Network (DSN) (7, 1/2) convolutional code is discussed in Refs. 1 to 3. Figure 1 shows the encoding and decoding schemes (without error correction, which does not concern us here). To detect node synchronization, one can use an updown counter driven by the syndrome bits p_n as follows: If $p_n = 0$, then the counter is decremented by 1; if $p_n = 1$, then the counter is incremented by a fixed positive integer k-1. The counter is not allowed to become negative, however, and a false-sync condition is declared if the counter reaches a certain threshold T.

The probability of false alarm, P_{FA} , is the probability of reaching T during the total time of use, given that sync is true. We want P_{FA} to be small. References 2 and 3 give estimates for E_{FA} , the expected time to false alarm, and execute a counter design based in part on the requirement $E_{FA} >> n_b$, the total number of bits seen by the decoder (specifically, $E_{FA} > 100 \ n_b$). This is dangerous because the ratio E_{FA}/n_b by itself gives no information about P_{FA} .

We have three aims here. First, the behavior of the node sync counter, called Counter 1, is estimated in Ref. 2 by comparing it to a certain random walk with independent steps, called Counter 2. Reference 2 asserts that Counter 1 is never

above Counter 2. At the time, we carelessly regarded this assertion as obvious; in fact, it requires a substantial proof, which we give below. Second, we prove that the first-passage times of Counter 2 have finite expectation; Ref. 2 gives estimates for these expectations without proving their existence. Third, we give a crude (but still useful) estimate for P_{FA} .

II. Proof That Counter 1 ≤ Counter 2

First, we review the generation of the syndrome (p_n) . According to Fig. 1, the syndrome is obtained by combining the outputs of two shift registers fed by the corrupted channel symbols s_{1n}^* , s_{2n}^* . The shift register taps are given by the polynomials

$$C_1(x) = 1 + x^2 + x^3 + x^5 + x^6$$

$$C_2(x) = 1 + x + x^2 + x^3 + x^6$$

Let e_{1n} , e_{2n} be the binary channel symbol *errors*, with associated formal power series

$$E_1(x) = \sum e_{1n} x^n, E_2(x) = \sum e_{2n} x^n.$$

Then, if

$$P(x) = \sum p_n x^n,$$

we have

$$P(x) = C_2(x)E_1(x) + C_1(x)E_2(x) \pmod{2} \tag{1}$$

Next, we define the counters. Let e_t $(t = 1/2, 1, 3/2, 2, \cdots)$ be the multiplexed symbol error stream, that is, $e_{n-1/2} = e_{1n}$, $e_n = e_{2n}$. Counters 1 and 2 both start at zero. Let $K_1(n) =$ counter 1 state at bit time n, K_2 (t) = counter 2 state at time $t = 1/2, 1, 3/2, 2, \cdots$. For our purpose we can ignore the absorbing barrier at T. Let k be a fixed integer ≥ 2 . By definition

$$K_{1}(0) = K_{2}(0) = 0$$

$$K_{1}(n) - K_{1}(n-1) = k-1 \quad \text{if } p_{n} = 1$$

$$= -1 \quad \text{if } p_{n} = 0, K_{1}(n-1) > 0$$

$$= 0 \quad \text{if } p_{n} = 0, K_{1}(n-1) = 0$$

$$K_{2}(t) - K_{2}\left(t - \frac{1}{2}\right) = 5k - \frac{1}{2} \quad \text{if } \epsilon_{t} = 1$$

$$= -\frac{1}{2} \quad \text{if } \epsilon_{t} = 0, K_{2}\left(t - \frac{1}{2}\right) > 0$$

$$= 0 \quad \text{if } \epsilon_{t} = 0, K_{2}\left(t - \frac{1}{2}\right) = 0$$

Theorem: Assume that $e_{1n} = e_{2n} = 0$ for $n \le 0$. For any symbol error sequence $(e_{1n}, e_{2n}: n \ge 1)$, we have

$$K_1(n) \le K_2(n) \quad (n = 1, 2, \cdots)$$

If there were no reflecting barrier, the theorem would be obvious, for let K'_i be Counter i without the barrier. For example, $K'_1(n) - K'_1(n-1) = kp_n - 1$ for all n. Then, as Ref. 2 points out,

$$K'_{1}(n) = k \sum_{j=1}^{n} p_{j} - n \le 5k \sum_{t \le n} e_{t} - n = K'_{2}(n)$$

since each $e_t = 1$ propagates a pattern of 5 parity errors into the future, and these patterns are added modulo 2.

To prove the theorem with the barrier, we introduce another sequence q_1, q_2, \cdots and a third counter K_3 . The formal power series

$$Q(x) = \sum q_n x^n$$

is defined by

$$Q(x) = C_2(x)E_1(x) + C_1(x)E_2(x)$$

which is just Eq. (1), except that now the arithmetic is *not* performed modulo 2. Thus, $p_n = q_n \mod 2 \le q_n$. The counter K_3 is driven from the q_n just as K_1 is driven from the p_n . By definition, $K_3(0) = 0$ and

$$K_3(n) - K_3(n-1) = kq_n - 1$$
 if $q_n > 0$
= -1 if $q_n = 0, K_3(n-1) > 0$
= 0 if $q_n = 0, K_3(n-1) = 0$

Our purpose is to prove that

$$K_1(n) \le K_3(n), K_3(n) \le K_2(n) \text{ for all } n$$
 (2)

Since $p_n \le q_n$, we have $K_1(n) - K_1(n-1) \le K_3(n) - K_3(n-1)$. This proves the first half of Eq. (2).

To prove the second half, we introduce the notion of burst event. We shall say that a burst event starts at the integer m if $e_{1m} = 1$ or $e_{2m} = 1$, and the previous 6 bit times are free of symbol errors. It ends (at integer time r > m) as soon as 6 consecutive error-free bit times have occurred (at times $r - 5, \dots, r$). (The event goes on forever if a run of 6 good bit times never occurs after m.)

Let a burst event start at m. Let K_3' be K_3 without the reflecting barrier. We shall prove that

$$K_3(n) - K_3(m-1) = K_3'(n) - K_3'(m-1)$$
 (3)

for all n in the burst event. This means that the barrier does not influence the motion of K_3 during the burst event. If Eq. (3) holds for k = 2, then it holds for all k > 2 because the counter increments are greater. So assume k = 2.

The proof goes by induction on n. Equation (3) holds for n = m - 1. Let n be in the burst event and assume that Eq. (3)

holds through time n-1. There is an integer i between n-6 and n such that $e_{1,i}=1$ or $e_{2,i}=1$. By assumption,

$$K_3(i-1) - K_3(m-1) = K_3'(i-1) - K_3'(m-1)$$
 (4)

If $e_{1i} = 1$, then $C_2 = 1111001$ propagates into the q_n stream. If there are no other symbol errors from time i onward, then $K_3(j) - K_3(i-1)$ takes values 1, 2, 3, 4, 3, 2, 3 for $j = i, \dots, i+6$. Similarly, $e_{2i} = 1$ by itself propagates $C_1 = 1011011$ and causes $K_3(j) - K_3(i-1)$ to take values 1, 0, 1, 2, 1, 2, 3. Although the counter dips to zero in this case (if $K_3(i-1) = 0$), the next increment, being positive, moves the counter away from the barrier. Since any other symbol errors between i and i+6 cause the counter to take values above those just displayed, we have shown that

$$K_3(j) - K_3(i-1) = K'_3(j) - K'_3(i-1)$$

for $i \le j \le i + 6$, in particular, for j = n. With Eq. (4), this completes the induction and proves Eq. (3) over the whole burst event.

Consider now the behavior of K_2 during a burst event starting at m. Each symbol error (at time n or n-1/2) contributes 5k to K_2' immediately (combined with a constant drift of -1 per bit), whereas the 5k-contribution to K_3' is spread over the times $n, n+1, \dots, n+6$. Therefore

$$K'_{3}(n) - K'_{3}(m-1) \le K'_{2}(n) - K'_{2}(m-1)$$

(In fact, the two sides are equal at the end of the burst event.) In view of Eq. (3) and the relation

$$K_2'(t) - K_2'(s) \le K_2(t) - K_2(s)$$

valid whenever $s \leq t$, we have

$$K_3(n) - K_3(m-1) \le K_2(n) - K_2(m-1)$$
 (5)

for all n in the burst event.

We are almost done. Before the first burst event (if it exists), $K_3(n) = K_2(n) = 0$. During the first event, $K_3(n) \le K_2(n)$ by Eq. (5). If the first event ends, then K_3 and K_2 both start to decrease at the same rate until they hit zero or the second burst event starts (if it exists). Just before the start of the second event, $K_3 \le K_2$. By Eq. (5), $K_3 \le K_2$ during the second event, and so on. This proves the second half of Eq. (2), and completes the proof of the theorem.

III. Proof That the Mean Absorption Times of Counter 2 Are Finite

Since Counter 2 takes half-integral values with time steps of length 1/2, a simple change of variables (as in Ref. 2) brings the notation into line with the discussions of integer-valued random walks in Feller (Ref. 4). When we do this, we have a random walk, with independent steps, starting at height 1. Each step is equal to $d = 10 \ k - 1$ with probability p, and -1 with probability q = 1 - p. The walk is not allowed to go below 1 (reflecting barrier at 0) and stops if it reaches or exceeds an absorbing barrier at a = 2T + 1.

Reference 2 uses the difference-equation method of Ref. 4 to get bounds on the expected absorption time (without first proving that the expectation exists). Here, we use the same method to estimate the generating function of the absorption-time distribution. For $1 \le j \le a - 1$ and $n \ge 1$, let u_j , n be the probability that the walk is absorbed at time n, given that it starts at height j. The first step is to j + d or j - 1 and so

$$u_{i,n+1} = pu_{i+d,n} + qu_{i-1,n} \tag{6}$$

for $2 \le j \le a - d - 1$, $n \ge 1$. If we account for the absorbing and reflecting barriers by imposing the boundary conditions

$$u_{0,n} = u_{1,n}, u_{j,n} = 0 \quad (a \le j \le a + d - 1, n \ge 1)$$

$$u_{j,0} = 0 \quad (0 \le j \le a - 1) \quad (7)$$

$$u_{j,0} = 1 \quad (a \le j \le a + d - 1)$$

then Eq. (6) holds for $1 \le j \le a - 1$, $n \ge 0$. Introduce the generating functions

$$U_{j}(s) = \sum_{n=0}^{\infty} u_{j, n} s^{n} \quad (0 \le j \le a + d - 1)$$

which converge at least for $|s| \le 1$. Equations (6) and (7) are equivalent to the equations

$$U_{j}(s) = psU_{j+a}(s) + qsU_{j-1}(s) \quad (1 \le j \le a-1)$$
 (8)

$$U_0(s) = U_1(s)$$

$$U_i(s) = 1 \qquad (a \le j \le a + d - 1)$$

Fix an s, 0 < s < 1. The characteristic equation of Eq. (8),

$$pz^d + qz^{-1} = \frac{1}{s} (9)$$

has exactly two real, positive roots, $\lambda_1(s)$, $\lambda_2(s)$, which satisfy $0 < \lambda_1(s) < 1 < \lambda_2(s)$. The sequence

$$E_{j}(s) = \frac{(\lambda_{2} - 1) \lambda_{1}^{j} + (1 - \lambda_{1}) \lambda_{2}^{j}}{\lambda_{1}^{a} (\lambda_{2} - 1) + \lambda_{2}^{a} (1 - \lambda_{1})}$$

satisfies an equation analogous to Eq. (8), plus the boundary conditions

$$E_0(s) = E_1(s), E_a(s) = 1$$

Because $E_i(s)$ is also convex in j, we have

$$E_i(s) \geqslant 1 \quad (a \leqslant j \leqslant a + d - 1)$$

Let $\Delta_i(s) = E_i(s) - U_i(s)$ for $0 \le i \le a + d - 1$. Then

$$p\Delta_{j+d}(s) + q\Delta_{j-1}(s) = \frac{1}{s}\Delta_{j}(s) \quad (1 \le j \le a - 1)$$
 (10)

$$\Delta_{\alpha}(s) = \Delta_{\alpha}(s) \tag{11}$$

$$\Delta_i(s) \geqslant 0$$
 $(a \leq j \leq a + d - 1)(12)$

We assert that $\Delta_j(s) \ge 0$ for $0 \le j \le a + d - 1$. To prove this let

$$m = \Delta_{\nu}(s) = \min \{\Delta_{i}(s): 0 \le j \le a+d-1\}$$

We want to show $m \ge 0$. If $a \le r \le a + d - 1$, we are done, by Eq. (12). Otherwise, we can assume $r \ge 1$ because of Eq. (11), and we have, from Eq. (10),

$$p\left(\Delta_{r+d} - \frac{m}{s}\right) + q\left(\Delta_{r-1} - \frac{m}{s}\right) = 0$$

Since $\Delta_{r+d} \ge m$, $\Delta_{r-1} \ge m$, we have

$$pm \left(1 - \frac{1}{s}\right) + qm \left(1 - \frac{1}{s}\right) \ge 0$$

and so $m \ge 0$.

We have thus derived the bound

$$U_1(s) \leqslant E_0(s) \tag{13}$$

By a similar argument,

$$U_1(s) \geqslant F_0(s) \tag{14}$$

where $F_0(s)$ is like $E_0(s)$ except that a is replaced by a + d - 1.

From now on, assume that q > pd. An inspection of Eq. (9) shows that

$$\frac{1-\lambda_1(s)}{1-s} \to \frac{1}{q-pd}, \lambda_2(s) \to \lambda > 1$$

as $s \to 1$ -. From this we see that $(1 - E_0(s))/(1 - s)$ and $(1 - F_0(s))/(1 - s)$ both tend to finite limits as $s \to 1$ -. Hence, $(1 - U_1(s))/(1 - s)$ tends to a finite limit D_1 . This shows, first, that the absorption time is finite with probability 1, and second, that its expectation is D_1 . In fact, the above limits give the same upper and lower bounds on D_1 as Ref. 2 gives, namely

$$\frac{1}{q - pd} \left(\frac{\lambda^a - 1}{\lambda - 1} - a \right) \le D_1 \le \frac{1}{q - pd} \left(\frac{\lambda^b - 1}{\lambda - 1} - b \right) \tag{15}$$

where b = a + d - 1, and λ is the unique real number satisfying $\lambda > 1$, $p\lambda^d + q\lambda^{-1} = 1$. Therefore, as in Ref. 2, we have

$$E_{FA} \geqslant \frac{1}{2(q-pd)} \left(\frac{\lambda^a - 1}{\lambda - 1} - a \right)$$

because Counter 2 operates twice each bit time.

IV. A Tail Estimate for the Absorption Time

Let τ be the absorption time for the random walk discussed in the last section, where the walk starts at height 1. Equation (15) gives bounds for $E(\tau) = D_1$, and we now desire a bound for the left-hand tail probabilities $P\{\tau < n\}$.

We say that our random walk X_n is reflected at time $n \ge 1$ if $X_{n-1} = 1$, $X_n = 1$. In other words, the walk returns to 1 and then tries to get to 0. There is a certain probability α that the random walk is absorbed at α without ever undergoing a reflection. If, however, the walk is reflected, it "starts from scratch;" again it has probability α of being absorbed before reflection. Thus, if N is the number of reflections before final absorption, we have

$$P\{N=0\} = \alpha, P\{N=1\} = (1-\alpha)\alpha, \cdots$$

$$P\{N=n\}=(1-\alpha)^n \alpha, \cdots$$

We invoke the absurdly simple inequality

$$\tau \geqslant N$$

and its consequence

$$P\{\tau < n\} \le P\{N < n\} = 1 - (1 - \alpha)^n$$
 (16)

For our situation this estimate is not bad; because $p \ll 1$ and the average drift rate pd-q is negative, most of the intervals between reflections have length 1. To use Eq. (16) we need to compute α . This is the familiar gambler's ruin problem with barriers at 0 and a. Again using the difference equation technique, Ref. 4, Chap. XIV, Eq. (8.12) gives

$$\frac{\lambda - 1}{\lambda^{a+d-1} - 1} \leqslant \alpha \leqslant \frac{\lambda - 1}{\lambda^{a} - 1} \tag{17}$$

Letting $\alpha^* = (\lambda - 1)/(\lambda^a - 1)$, we have

$$P \{ \tau < n \} \le 1 - (1 - \alpha^*)^n$$

$$\approx 1 - e^{-n\alpha^*}$$

for $n\alpha^{*2}$ << 1. Since Counter 2 operates twice each bit time, the false-alarm probability P_{FA} for Counter 1 satisfies

$$P_{FA} \leqslant 1 - \exp(-2n_b \alpha^*)$$

 $\approx 2n_b \alpha^* \text{ for } 2n_b \alpha^* \leqslant 1$
(18)

Finally, observe that

$$E(\tau) \geqslant E(N) = \frac{1}{\alpha} - 1 \geqslant \frac{\lambda^a - \lambda}{\lambda - 1}$$
 (19)

The quality of Eq. (16) can be judged by comparing Eq. (19) with Eq. (15). Essentially, we are giving up a factor q - pd in the mean.

V. Numerical Example

Let us substitute numbers from the design given in Ref. 2. The parameters are $p = 6.13 \times 10^{-3}$, k = 8, T = 511. Then we have d = 79, a = 1023, q - pd = 0.5096, $\lambda = 1.016408599$, $\alpha^* = (\lambda - 1)/(\lambda^a - 1) = 1/(1.037 \times 10^9)$.

For the false-alarm probability during n_b bits, and the expected false-alarm time, we have

$$P_{FA} \leqslant \frac{2n_b}{10^9} \text{ for } 2n_b \ll 10^9$$
 (20)

$$E_{FA} \geqslant \frac{\alpha^*}{2(0.5096)} \approx 10^9 \text{ bits}$$
 (21)

In particular, if $n_b = 10^9/100 = 10^7$ bits, then $P_{FA} \leq 0.02$.

VI. Conclusions

We have seen that it is not difficult to get practical estimates for the behavior of Counter 2, a random walk with independent steps. It appears that the false-alarm time for Counter 2 is approximately exponentially distributed; estimates for the distribution and its mean have been given. Although these estimates could be refined, we think that the real loss comes from the estimate "Counter 1 \leq Counter 2;" a brief simulation showed that the excursions of Counter 2 were much greater than those of Counter 1. The real P_{FA} of Counter 1 is probably much less than the 0.02 upper bound based on Counter 2 theory.

Acknowledgment

I thank Gary Lorden for helping me with the estimation of absorption time probabilities.

References

- 1. Greenhall, C. A., and Miller, R. L., "Quick-Look Decoding Schemes for DSN convolutional Codes," *DSN Progress Report 42-51*, 162-166, Jet Propulsion Laboratory, Pasadena, Calif., 1979.
- 2. Greenhall, C. A., and Miller, R. L., "Design of a Quick-Look Decoder for the DSN (7, 1/2) Convolutional Code," *DSN Progress Report 42-53*, 93-101, Jet Propulsion Laboratory, Pasadena, Calif., 1979.
- 3. Greenhall, C. A., Miller, R. L., and Butman, S. A., "A Quick-Look Decoder With Isolated Error Correction and Node Synchronization," *IEEE Transactions on Communications*, July 1981 (to appear).
- 4. Feller, W., An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd Edition, Wiley and Sons, New York, N. Y., 1968.

Fig. 1. Quick-look decoder for the DSN (7, 1/2) code